Simple Uni V2 Tree - Finite Index Token
- Assumptions:
- Uses Simple Tree
- Uses stablecoins (ie, USDC and USDT) to control for impermanent loss
- Includes state machine to handle finite supply of index tokens
- LPs include:
- USDC-USDT
- USDC-iUSDC
- To run locally, download notebook from SYS-Labs repos
import os
import numpy as np
import pandas as pd
import datetime
import matplotlib.pyplot as plt
import scipy.stats as stats
import statsmodels.api as sm
import seaborn as sns
from uniswappy import *
Script params
init_tkn_lp = 100000
tkn_delta_param = 1000
tkn_invest_amt = 100
tkn_nm = 'USDC'
itkn_nm = 'iUSDC'
usd_nm = 'USDT'
iusd_nm = 'iUSDT'
Simulate price data
# *************************
# *** Simulation
# *************************
n_sim_runs = 2000
seconds_year = 31536000
shape = 2000
scale = 0.0005
p_arr = np.random.gamma(shape = shape, scale = scale, size = n_sim_runs)
n_runs = len(p_arr)-1
dt = datetime.timedelta(seconds=seconds_year/n_sim_runs)
dates = [datetime.datetime.strptime("2024-09-01", '%Y-%m-%d') + k*dt for k in range(n_sim_runs)]
x_val = np.arange(0,len(p_arr))
fig, (USD_ax) = plt.subplots(nrows=1, sharex=False, sharey=False, figsize=(18, 5))
USD_ax.plot(dates, p_arr, color = 'r',linestyle = 'dashdot', label='initial invest')
USD_ax.set_title(f'Price Chart ({tkn_nm}/{usd_nm})', fontsize=20)
USD_ax.set_ylabel('Price (USD)', size=20)
USD_ax.set_xlabel('Date', size=20)
Text(0.5, 0, 'Date')
Initialization Params
user_nm = 'user0'
tkn_amount = init_tkn_lp
dai_amount = p_arr[0]*tkn_amount
Initialize Left DEX Tree
dai1 = ERC20(usd_nm, "0x111")
tkn1 = ERC20(tkn_nm, "0x09")
exchg_data = UniswapExchangeData(tkn0 = tkn1, tkn1 = dai1, symbol="LP", address="0x011")
TKN_amt = TokenDeltaModel(tkn_delta_param)
TKN_amt_arb = TokenDeltaModel(100)
lp1_state = MarkovState(stochastic = True)
iVault1 = IndexVault('iVault1', "0x7")
factory = UniswapFactory(f"{tkn_nm} pool factory", "0x2")
lp = factory.deploy(exchg_data)
Join().apply(lp, user_nm, tkn_amount, dai_amount)
tkn2 = ERC20(tkn_nm, "0x09")
itkn1 = IndexERC20(itkn_nm, "0x09", tkn1, lp)
exchg_data1 = UniswapExchangeData(tkn0 = tkn2, tkn1 = itkn1, symbol="LP1", address="0x012")
lp1 = factory.deploy(exchg_data1)
JoinTree().apply(lp1, user_nm, iVault1, 10000)
# Re-balance LP price after JoinTree
SwapDeposit().apply(lp, dai1, user_nm, lp.reserve0-lp.reserve1)
lp.summary()
lp1.summary()
Exchange USDC-USDT (LP)
Reserves: USDC = 109999.99999999997, USDT = 109999.99999999996
Liquidity: 109983.41616244175
Exchange USDC-iUSDC (LP1)
Reserves: USDC = 9972.071706380626, iUSDC = 4836.2900332872905
Liquidity: 6944.62605219279
Take an investment position
tkn_invest = 100
invested_user_nm = 'invested_user'
SwapIndexMint(iVault1, opposing = False).apply(lp, tkn1, invested_user_nm, tkn_invest)
mint_itkn1_deposit = iVault1.index_tokens[itkn_nm]['last_lp_deposit']
lp1_state.next_state(mint_itkn1_deposit)
SwapDeposit().apply(lp1, itkn1, invested_user_nm, mint_itkn1_deposit)
lp.summary()
lp1.summary()
lp_invest_track = lp.liquidity_providers[invested_user_nm]
lp1_invest_track = lp1.liquidity_providers[invested_user_nm]
tkn_redeem_parent = RebaseIndexToken().apply(lp, tkn1, lp_invest_track)
itkn_redeem_child = RebaseIndexToken().apply(lp1, itkn1, lp1_invest_track)
tkn_redeem_tree = RebaseIndexToken().apply(lp, tkn1, itkn_redeem_child)
print(f'{tkn_redeem_parent:.3f} USDC redeemed from {lp_invest_track:.3f} LP tokens if {tkn_invest:.1f} invested USDC immediately pulled from parent')
print(f'{tkn_redeem_tree:.3f} USDC redeemed from {lp1_invest_track:.3f} LP1 tokens if {tkn_invest:.1f} invested USDC immediately pulled from tree')
Exchange USDC-USDT (LP)
Reserves: USDC = 110099.99999999997, USDT = 109999.99999999996
Liquidity: 110033.32218331363
Exchange USDC-iUSDC (LP1)
Reserves: USDC = 9972.071706380626, iUSDC = 4886.196054159184
Liquidity: 6980.31144644773
99.700 USDC redeemed from 49.906 LP tokens if 100.0 invested USDC immediately pulled from parent
99.403 USDC redeemed from 35.685 LP1 tokens if 100.0 invested USDC immediately pulled from tree
Simulate trading
arb = CorrectReserves(lp, x0 = 1)
arb1 = Arbitrage(lp1, lp1_state)
TKN_amt = TokenDeltaModel(tkn_delta_param)
lp_direct_invest_arr = []; lp1_direct_invest_arr = []; lp1_tree_invest_arr = [];
pTKN_DAI_arr = []; pTKN_iTKN_arr = []
fee_lp_arr = []; fee_lp1_arr = [];
for k in range(n_sim_runs):
#if(k % 100 == 0 and k != 0): print(f'Processing event {k}')
# *****************************
# ***** Parent Arbitrage ******
# *****************************
arb.apply(p_arr[k])
# *****************************
# ***** Child Arbitrage ******
# *****************************
amt_arb1 = TKN_amt_arb.delta()
arb1.apply(1, user_nm, amt_arb1)
arb1.update_state(itkn1)
mint_tkn1_amt = 0.5*TKN_amt.delta()
SwapIndexMint(iVault1, opposing = False).apply(lp, tkn1, user_nm, mint_tkn1_amt)
mint_itkn1_deposit = iVault1.index_tokens[itkn_nm]['last_lp_deposit']
lp1_state.next_state(mint_itkn1_deposit)
vault_lp1_amt = lp1_state.get_current_state('dVault')
burned_itkn1_amt = lp1_state.get_current_state('dBurned')
## WithdrawSwap burned token from parent LP
if(burned_itkn1_amt > 0):
total_tkn_w_swap = LPQuote(False).get_amount_from_lp(lp, tkn1, burned_itkn1_amt)
amt_out = RemoveLiquidity().apply(lp, tkn1, user_nm, total_tkn_w_swap/2)
## Balance LP1: TKN/iTKN
if(vault_lp1_amt > 0):
# A portion of aquired token is coming from newly minted, while the remainder is coming from held
amt_tkn = LPQuote(False).get_amount_from_lp(lp, tkn1, vault_lp1_amt)
price_tkn = amt_tkn/vault_lp1_amt
AddLiquidity(price_tkn).apply(lp1, itkn1, user_nm, vault_lp1_amt)
elif(vault_lp1_amt < 0):
# A portion of removed token is getting held, while the remainder is getting burned
RemoveLiquidity().apply(lp1, itkn1, user_nm, abs(vault_lp1_amt))
# *****************************
# ***** Random Swapping ******
# *****************************
Swap().apply(lp, tkn1, user_nm, TKN_amt.delta())
Swap().apply(lp, dai1, user_nm, TKN_amt.delta())
# conservatively assume 10% of tokens held outside vault are traded
held_tokens = lp1_state.get_current_state('Held')
if(held_tokens > 0):
tradable_itkn1_amt = 0.1*held_tokens
Swap().apply(lp1, tkn2, user_nm, LPQuote(False).get_amount_from_lp(lp, tkn1, tradable_itkn1_amt))
Swap().apply(lp1, itkn1, user_nm, tradable_itkn1_amt)
# *****************************
# ******* Data Capture ********
# *****************************
# price
pTKN_DAI_arr.append(LPQuote().get_price(lp, tkn1))
pTKN_iTKN_arr.append(LPQuote().get_price(lp1, tkn1))
# investment performance
tkn_redeem_parent = RebaseIndexToken().apply(lp, tkn1, lp_invest_track)
itkn_redeem_child = RebaseIndexToken().apply(lp1, itkn1, lp1_invest_track)
tkn_redeem_tree = RebaseIndexToken().apply(lp, tkn1, itkn_redeem_child)
lp_direct_invest_arr.append(tkn_redeem_parent)
lp1_direct_invest_arr.append(RebaseIndexToken().apply(lp1, tkn2, lp1_invest_track))
lp1_tree_invest_arr.append(tkn_redeem_tree)
# DEX Fees
fee_lp_arr.append(TreeAmountQuote().get_tot_y(lp, lp.collected_fee0, lp.collected_fee1))
fee_lp1_arr.append(TreeAmountQuote().get_tot_y(lp1, lp1.collected_fee0, lp1.collected_fee1))
lp.summary()
lp1.summary()
tkn_redeem_parent = RebaseIndexToken().apply(lp, tkn1, lp_invest_track)
itkn_redeem_child = RebaseIndexToken().apply(lp1, itkn1, lp1_invest_track)
tkn_redeem_tree = RebaseIndexToken().apply(lp, tkn1, itkn_redeem_child)
print(f'{tkn_redeem_parent:.3f} USDC redeemed from {lp_invest_track:.3f} LP tokens if {tkn_invest:.1f} invested USDC pulled from parent')
print(f'{tkn_redeem_tree:.3f} USDC redeemed from {lp1_invest_track:.3f} LP1 tokens if {tkn_invest:.1f} invested USDC pulled from tree')
Exchange USDC-USDT (LP)
Reserves: USDC = 168815.92386594447, USDT = 171618.84617367428
Liquidity: 162205.24067497675
Exchange USDC-iUSDC (LP1)
Reserves: USDC = 30172.363323917827, iUSDC = 14919.845854947607
Liquidity: 18018.420437590765
103.708 USDC redeemed from 49.906 LP tokens if 100.0 invested USDC pulled from parent
122.500 USDC redeemed from 35.685 LP1 tokens if 100.0 invested USDC pulled from tree
lp1_state.check_states()
lp1_state.inspect_states(tail = True, num_states = 5)
Amount of tokens retained across states: [1m[31mFAIL[0m
Mint | Held | Vault | Burned | dHeld | dVault | dBurned | |
---|---|---|---|---|---|---|---|
1996 | 20.464916 | 3907.214028 | 16139.020590 | 73695.645149 | -171.987708 | 165.276973 | 29.088187 |
1997 | 20.407510 | 4461.748224 | 15553.598456 | 73746.998003 | 554.534196 | -585.422134 | 51.352855 |
1998 | 9.126091 | 4496.482451 | 15483.465970 | 73802.803772 | 34.734228 | -70.132486 | 55.805768 |
1999 | 1.355033 | 4197.025621 | 15782.904086 | 73811.948577 | -299.456830 | 299.438116 | 9.144805 |
2000 | 10.243511 | 3703.699982 | 16246.715137 | 73842.818198 | -493.325640 | 463.811051 | 30.869621 |
fig, (TKN_ax, DAI_ax) = plt.subplots(nrows=2, sharex=False, sharey=False, figsize=(15, 8))
strt_pt = 5
TKN_ax.plot(dates[strt_pt:], p_arr[strt_pt:], color = 'g',linestyle = 'dashed', linewidth=1, label=f'{tkn_nm} Price (Market)')
TKN_ax.plot(dates[strt_pt:], pTKN_DAI_arr[strt_pt:], color = 'b',linestyle = '-', linewidth=0.7, label=f'{tkn_nm}/{usd_nm} (LP)')
TKN_ax.set_title('Price comparison: parent vs child LPs', fontsize=20)
TKN_ax.set_ylabel('Price (USD)', size=20)
TKN_ax.legend(fontsize=12)
TKN_ax.grid()
DAI_ax.plot(dates[strt_pt:], pTKN_iTKN_arr[strt_pt:], color = 'b',linestyle = 'dashed', label=f'{tkn_nm}/{itkn_nm} (LP1)')
DAI_ax.set_ylabel('prices', size=20)
DAI_ax.set_ylabel('Price (USD)', size=20)
DAI_ax.legend(fontsize=12)
DAI_ax.grid()
y1_samp = stats.gamma.rvs(a=2000, scale=0.0005, size=10000)
fig, ax = plt.subplots(1, 2, figsize=(12,5))
sns.distplot(pTKN_DAI_arr, hist=True, kde=True, bins=int(30), color = 'darkblue',
hist_kws={'edgecolor':'black'}, kde_kws={'linewidth': 2}, ax=ax[0])
sns.distplot(pTKN_iTKN_arr, hist=True, kde=True, bins=int(30), color = 'darkblue',
hist_kws={'edgecolor':'black'}, kde_kws={'linewidth': 2}, ax=ax[1])
ax[0].set_title(f'Distribution: {tkn_nm}/{usd_nm} LP price (parent)')
ax[0].set_xlabel('Price')
ax[0].set_ylabel('Frequency')
ax[1].set_title(f'Distribution: {tkn_nm}/{itkn_nm} LP1 price (child)')
ax[1].set_xlabel('Price')
ax[1].set_ylabel('Frequency')
Text(0, 0.5, 'Frequency')
lowess = sm.nonparametric.lowess
x = range(0,n_sim_runs)
res = lowess(lp_direct_invest_arr, x, frac=1/15); sm_lp_direct = res[:,1]
res = lowess(lp1_direct_invest_arr, x, frac=1/15); sm_lp1_direct = res[:,1]
res = lowess(lp1_tree_invest_arr, x, frac=1/15); sm_lp1_tree= res[:,1]
strt_ind = 3
fig, (p_ax) = plt.subplots(nrows=1, sharex=True, sharey=False, figsize=(15, 8))
fig.suptitle('Simple Tree (USDC / USDT) performance ', fontsize=20)
p_ax.plot(dates[strt_ind:], lp_direct_invest_arr[strt_ind:], linestyle='dashed', linewidth=0.5, color = 'g')
p_ax.plot(dates[strt_ind:], sm_lp_direct[strt_ind:], color = 'g', label = 'Expected return from parent (LP)')
p_ax.plot(dates[strt_ind:], lp1_direct_invest_arr[strt_ind:], linestyle='dashed', linewidth=0.5, color = 'b')
p_ax.plot(dates[strt_ind:], sm_lp1_direct[strt_ind:], color = 'b', label = 'Expected return from child (LP1)')
p_ax.plot(dates[strt_ind:], lp1_tree_invest_arr[strt_ind:], linestyle='dashed', linewidth=0.5, color = 'r')
p_ax.plot(dates[strt_ind:], sm_lp1_tree[strt_ind:], color = 'r', label = 'Expected return from tree (LP+LP1)')
p_ax.legend( fontsize=12)
p_ax.set_ylabel("$100 USD Investment", fontsize=14)
Text(0, 0.5, '$100 USD Investment')
print(f'{tkn_invest:.3f} TKN before is worth {sm_lp_direct[-1]:.3f} TKN after direct investment into parent (lp)')
print(f'{tkn_invest:.3f} TKN before is worth {sm_lp1_direct[-1]:.3f} TKN after direct investment into child (lp1)')
print(f'{tkn_invest:.3f} TKN before is worth {sm_lp1_tree[-1]:.3f} TKN after investment into simple tree (lp + lp1)')
100.000 TKN before is worth 104.377 TKN after direct investment into parent (lp)
100.000 TKN before is worth 119.011 TKN after direct investment into child (lp1)
100.000 TKN before is worth 123.596 TKN after investment into simple tree (lp + lp1)
t = np.arange(0,len(fee_lp_arr))
fee_lpB = np.array(fee_lp1_arr)
fee_lpA = fee_lpB+np.array(fee_lp_arr)
fig = plt.figure(figsize=(15, 5))
plt.plot(dates, fee_lpA, color = 'r', label = f'Parent LP ({tkn_nm}/{usd_nm})')
plt.fill_between(dates, fee_lpB, fee_lpA, alpha=0.3, color='r')
plt.plot(dates, fee_lpB, color = 'b', label = f'Child LP1 ({tkn_nm}/{itkn_nm})')
plt.fill_between(dates, np.repeat(0,len(fee_lp_arr)), fee_lpB, alpha=0.3, color='b')
plt.title('Cumulative Arbitrage Fees (Direct Investment, Simple Tree, Uni V2)', fontsize = 20)
plt.xlabel("Time unit", fontsize=12)
plt.ylabel("Collected Fees (USD)", fontsize=14)
plt.legend(fontsize=12)
<matplotlib.legend.Legend at 0x16c0092d0>